In the Pattern Masking for Dictionary Matching (PMDM) problem, we are given a dictionary $\mathcal{D}$ of $d$ strings, each of length $\ell$, a query string $q$ of length $\ell$, and a positive integer $z$, and we are asked to compute a smallest set $K\subseteq\{1,\ldots,\ell\}$, so that if $q[i]$, for all $i\in K$, is replaced by a wildcard, then $q$ matches at least $z$ strings from $\mathcal{D}$. The PMDM problem lies at the heart of two important applications featured in large-scale real-world systems: record linkage of databases that contain sensitive information, and query term dropping. In both applications, solving PMDM allows for providing data utility guarantees as opposed to existing approaches. We first show, through a reduction from the well-known $k$-Clique problem, that a decision version of the PMDM problem is NP-complete, even for strings over a binary alphabet. We present a data structure for PMDM that answers queries over $\mathcal{D}$ in time $\mathcal{O}(2^{\ell/2}(2^{\ell/2}+\tau)\ell)$ and requires space $\mathcal{O}(2^{\ell}d^2/\tau^2+2^{\ell/2}d)$, for any parameter $\tau\in[1,d]$. We also approach the problem from a more practical perspective. We show an $\mathcal{O}((d\ell)^{k/3}+d\ell)$-time and $\mathcal{O}(d\ell)$-space algorithm for PMDM if $k=|K|=\mathcal{O}(1)$. We generalize our exact algorithm to mask multiple query strings simultaneously. We complement our results by showing a two-way polynomial-time reduction between PMDM and the Minimum Union problem [Chlamt\'{a}\v{c} et al., SODA 2017]. This gives a polynomial-time $\mathcal{O}(d^{1/4+\epsilon})$-approximation algorithm for PMDM, which is tight under plausible complexity conjectures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
76+阅读 · 2022年3月26日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
29+阅读 · 2020年3月16日
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员