We consider machine-learning of time-dependent quantities of interest derived from solution trajectories of parabolic partial differential equations. For large-scale or long-time integration scenarios, where using a full order model (FOM) to generate sufficient training data is computationally prohibitive, we propose an adaptive hierarchy of intermediate Reduced Basis reduced order models (ROM) to augment the FOM training data by certified ROM training data required to fit a kernel model.


翻译:我们考虑从抛物线部分差异方程的解答轨迹中,根据时间来机化学习一定数量的利息。 对于大规模或长期整合情景,如果使用完整订单模型(FOM)生成足够的培训数据在计算上令人望而却步,那么我们建议对中度减底订单减价模型(ROM)进行一个适应性等级,通过符合内核模型所需的经认证的ROM培训数据来补充FOM培训数据。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Fast Deep Autoencoder for Federated learning
Arxiv
1+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Fast Deep Autoencoder for Federated learning
Arxiv
1+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
15+阅读 · 2020年12月17日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员