Attacks on Federated Learning (FL) can severely reduce the quality of the generated models and limit the usefulness of this emerging learning paradigm that enables on-premise decentralized learning. However, existing untargeted attacks are not practical for many scenarios as they assume that i) the attacker knows every update of benign clients, or ii) the attacker has a large dataset to locally train updates imitating benign parties. In this paper, we propose a data-free untargeted attack (DFA) that synthesizes malicious data to craft adversarial models without eavesdropping on the transmission of benign clients at all or requiring a large quantity of task-specific training data. We design two variants of DFA, namely DFA-R and DFA-G, which differ in how they trade off stealthiness and effectiveness. Specifically, DFA-R iteratively optimizes a malicious data layer to minimize the prediction confidence of all outputs of the global model, whereas DFA-G interactively trains a malicious data generator network by steering the output of the global model toward a particular class. Experimental results on Fashion-MNIST, Cifar-10, and SVHN show that DFA, despite requiring fewer assumptions than existing attacks, achieves similar or even higher attack success rate than state-of-the-art untargeted attacks against various state-of-the-art defense mechanisms. Concretely, they can evade all considered defense mechanisms in at least 50% of the cases for CIFAR-10 and often reduce the accuracy by more than a factor of 2. Consequently, we design REFD, a defense specifically crafted to protect against data-free attacks. REFD leverages a reference dataset to detect updates that are biased or have a low confidence. It greatly improves upon existing defenses by filtering out the malicious updates and achieves high global model accuracy


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员