The Open Radio Access Network (O-RAN) architecture enables a flexible, vendor-neutral deployment of 5G networks by disaggregating base station components and supporting third-party xApps for near real-time RAN control. However, the concurrent operation of multiple xApps can lead to conflicting control actions, which may cause network performance degradation. In this work, we propose a framework for xApp conflict management that combines explainable machine learning and causal inference to evaluate the causal relationships between RAN Control Parameters (RCPs) and Key Performance Indicators (KPIs). We use model explainability tools such as SHAP to identify RCPs that jointly affect the same KPI, signaling potential conflicts, and represent these interactions as a causal Directed Acyclic Graph (DAG). We then estimate the causal impact of each of these RCPs on their associated KPIs using metrics such as Average Treatment Effect (ATE) and Conditional Average Treatment Effect (CATE). This approach offers network operators guided insights into identifying conflicts and quantifying their impacts, enabling more informed and effective conflict resolution strategies across diverse xApp deployments.
翻译:暂无翻译