Convergence rates for $L_2$ approximation in a Hilbert space $H$ are a central theme in numerical analysis. The present work is inspired by Schaback (Math. Comp., 1999), who showed, in the context of best pointwise approximation for radial basis function interpolation, that the convergence rate for sufficiently smooth functions can be doubled, compared to the best rate for functions in the "native space" $H$. Motivated by this, we obtain a general result for $H$-orthogonal projection onto a finite dimensional subspace of $H$: namely, that any known $L_2$ convergence rate for all functions in $H$ translates into a doubled $L_2$ convergence rate for functions in a smoother normed space $B$, along with a similarly improved error bound in the $H$-norm, provided that $L_2$, $H$ and $B$ are suitably related. As a special case we improve the known $L_2$ and $H$-norm convergence rates for kernel interpolation in reproducing kernel Hilbert spaces, with particular attention to a recent study (Kaarnioja, Kazashi, Kuo, Nobile, Sloan, Numer. Math., 2022) of periodic kernel-based interpolation at lattice points applied to parametric partial differential equations. A second application is to radial basis function interpolation for general conditionally positive definite basis functions, where again the $L_2$ convergence rate is doubled, and the convergence rate in the native space norm is similarly improved, for all functions in a smoother normed space $B$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月7日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员