We consider the problem of making nonparametric inference in multi-dimensional diffusion models from low-frequency data. Statistical analysis in this setting is notoriously challenging due to the intractability of the likelihood and its gradient, and computational methods have thus far largely resorted to expensive simulation-based techniques. In this article, we propose a new computational approach which is motivated by PDE theory and is built around the characterisation of the transition densities as solutions of the associated heat (Fokker-Planck) equation. Employing optimal regularity results from the theory of parabolic PDEs, we prove a novel characterisation for the gradient of the likelihood. Using these developments, for the nonlinear inverse problem of recovering the diffusivity (in divergence form models), we then show that the numerical evaluation of the likelihood and its gradient can be reduced to standard elliptic eigenvalue problems, solvable by powerful finite element methods. This enables the efficient implementation of a large class of statistical algorithms, including (i) preconditioned Crank-Nicolson and Langevin-type methods for posterior sampling, and (ii) gradient-based descent optimisation schemes to compute maximum likelihood and maximum-a-posteriori estimates. We showcase the effectiveness of these methods via extensive simulation studies in a nonparametric Bayesian model with Gaussian process priors. Interestingly, the optimisation schemes provided satisfactory numerical recovery while exhibiting rapid convergence towards stationary points despite the problem nonlinearity; thus our approach may lead to significant computational speed-ups. The reproducible code is available online at https://github.com/MattGiord/LF-Diffusion.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月7日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员