For many years, systems running Nvidia-based GPU architectures have dominated the heterogeneous supercomputer landscape. However, recently GPU chipsets manufactured by Intel and AMD have cut into this market and can now be found in some of the worlds fastest supercomputers. The June 2023 edition of the TOP500 list of supercomputers ranks the Frontier supercomputer at the Oak Ridge National Laboratory in Tennessee as the top system in the world. This system features AMD Instinct 250 X GPUs and is currently the only true exascale computer in the world.The first framework that enabled support for heterogeneous platforms across multiple hardware vendors was OpenCL, in 2009. Since then a number of frameworks have been developed to support vendor agnostic heterogeneous environments including OpenMP, OpenCL, Kokkos, and SYCL. SYCL, which combines the concepts of OpenCL with the flexibility of single-source C++, is one of the more promising programming models for heterogeneous computing devices. One key advantage of this framework is that it provides a higher-level programming interface that abstracts away many of the hardware details than the other frameworks. This makes SYCL easier to learn and to maintain across multiple architectures and vendors. In n recent years, there has been growing interest in using heterogeneous computing architectures to accelerate molecular dynamics simulations. Some of the more popular molecular dynamics simulations include Amber, NAMD, and Gromacs. However, to the best of our knowledge, only Gromacs has been successfully ported to SYCL to date. In this paper, we compare the performance of GROMACS compiled using the SYCL and CUDA frameworks for a variety of standard GROMACS benchmarks. In addition, we compare its performance across three different Nvidia GPU chipsets, P100, V100, and A100.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员