Stability is an important characteristic of network models that has implications for other desirable aspects such as controllability. The stability of a Boolean network depends on various factors, such as the topology of its wiring diagram and the type of the functions describing its dynamics. In this paper, we study the stability of linear Boolean networks by computing Derrida curves and quantifying the number of attractors and cycle lengths imposed by their network topologies. Derrida curves are commonly used to measure the stability of Boolean networks and several parameters such as the average in-degree K and the output bias p can indicate if a network is stable, critical, or unstable. For random unbiased Boolean networks there is a critical connectivity value Kc=2 such that if K<Kc networks operate in the ordered regime, and if K>Kc networks operate in the chaotic regime. Here, we show that for linear networks, which are the least canalizing and most unstable, the phase transition from order to chaos already happens at an average in-degree of Kc=1. Consistently, we also show that unstable networks exhibit a large number of attractors with very long limit cycles while stable and critical networks exhibit fewer attractors with shorter limit cycles. Additionally, we present theoretical results to quantify important dynamical properties of linear networks. First, we present a formula for the proportion of attractor states in linear systems. Second, we show that the expected number of fixed points in linear systems is 2, while general Boolean networks possess on average one fixed point. Third, we present a formula to quantify the number of bijective linear Boolean networks and provide a lower bound for the percentage of this type of network.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员