We present new message passing algorithms for performing inference with graphical models. Our methods are designed for the most difficult inference problems where loopy belief propagation and other heuristics fail to converge. Belief propagation is guaranteed to converge when the underlying graphical model is acyclic, but can fail to converge and is sensitive to initialization when the underlying graph has complex topology. This paper describes modifications to the standard belief propagation algorithms that lead to methods that converge to unique solutions on graphical models with arbitrary topology and potential functions.


翻译:我们提出了用于用图形模型进行推论的新的信息传递算法。 我们的方法针对的是循环信仰传播和其他超自然学无法汇合的最困难的推论问题。 当基本图形模型是环状的时,信仰传播可以保证会汇合,但不能汇合,并且当基本图形具有复杂的地形学时,对初始化十分敏感。本文描述了对标准信仰传播算法的修改,这些修改导致在带有任意地形学和潜在功能的图形模型上找到独特解决方案的方法。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
Arxiv
23+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员