Generative coding tools promise big productivity gains, but uneven uptake could widen skill and income gaps. We train a neural classifier to spot AI-generated Python functions in over 30 million GitHub commits by 170,000 developers, tracking how fast -- and where -- these tools take hold. Today, AI writes an estimated 29% of Python functions in the US, a modest and shrinking lead over other countries. We estimate that quarterly output, measured in online code contributions, has increased by 3.6% because of this. Our evidence suggests that programmers using AI may also more readily expand into new domains of software development. However, experienced programmers capture nearly all of these productivity and exploration gains, widening rather than closing the skill gap.


翻译:生成式编程工具有望带来巨大的生产力提升,但采用不均可能加剧技能与收入差距。我们训练了一个神经分类器,用于识别来自17万名开发者在GitHub上超过3000万次提交中由AI生成的Python函数,追踪这些工具的普及速度与地域分布。目前,美国约有29%的Python函数由AI编写,这一领先优势相对有限且正在缩小。我们估计,由于AI的应用,以在线代码贡献衡量的季度产出增长了3.6%。证据表明,使用AI的程序员可能更易于拓展至软件开发的新领域。然而,经验丰富的程序员几乎独占了这些生产力和探索性收益,反而扩大了而非弥合了技能差距。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
Top
微信扫码咨询专知VIP会员