Volumetric video has emerged as a prominent medium within the realm of eXtended Reality (XR) with the advancements in computer graphics and depth capture hardware. Users can fully immersive themselves in volumetric video with the ability to switch their viewport in six degree-of-freedom (DOF), including three rotational dimensions (yaw, pitch, roll) and three translational dimensions (X, Y, Z). Different from traditional 2D videos that are composed of pixel matrices, volumetric videos employ point clouds, meshes, or voxels to represent a volumetric scene, resulting in significantly larger data sizes. While previous works have successfully achieved volumetric video streaming in video-on-demand scenarios, the live streaming of volumetric video remains an unresolved challenge due to the limited network bandwidth and stringent latency constraints. In this paper, we for the first time propose a holistic live volumetric video streaming system, LiveVV, which achieves multi-view capture, scene segmentation \& reuse, adaptive transmission, and rendering. LiveVV contains multiple lightweight volumetric video capture modules that are capable of being deployed without prior preparation. To reduce bandwidth consumption, LiveVV processes static and dynamic volumetric content separately by reusing static data with low disparity and decimating data with low visual saliency. Besides, to deal with network fluctuation, LiveVV integrates a volumetric video adaptive bitrate streaming algorithm (VABR) to enable fluent playback with the maximum quality of experience. Extensive real-world experiment shows that LiveVV can achieve live volumetric video streaming at a frame rate of 24 fps with a latency of less than 350ms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员