The fractional differential equation $L^\beta u = f$ posed on a compact metric graph is considered, where $\beta>0$ and $L = \kappa^2 - \nabla(a\nabla)$ is a second-order elliptic operator equipped with certain vertex conditions and sufficiently smooth and positive coefficients $\kappa, a$. We demonstrate the existence of a unique solution for a general class of vertex conditions and derive the regularity of the solution in the specific case of Kirchhoff vertex conditions. These results are extended to the stochastic setting when $f$ is replaced by Gaussian white noise. For the deterministic and stochastic settings under generalized Kirchhoff vertex conditions, we propose a numerical solution based on a finite element approximation combined with a rational approximation of the fractional power $L^{-\beta}$. For the resulting approximation, the strong error is analyzed in the deterministic case, and the strong mean squared error as well as the $L_2(\Gamma\times \Gamma)$-error of the covariance function of the solution are analyzed in the stochastic setting. Explicit rates of convergences are derived for all cases. Numerical experiments for ${L = \kappa^2 - \Delta, \kappa>0}$ are performed to illustrate the results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年6月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员