While statistical modeling of distributional data has gained increased attention, the case of multivariate distributions has been somewhat neglected despite its relevance in various applications. This is because the Wasserstein distance, commonly used in distributional data analysis, poses challenges for multivariate distributions. A promising alternative is the sliced Wasserstein distance, which offers a computationally simpler solution. We propose distributional regression models with multivariate distributions as responses paired with Euclidean vector predictors. The foundation of our methodology is a slicing transform from the multivariate distribution space to the sliced distribution space for which we establish a theoretical framework, with the Radon transform as a prominent example. We introduce and study the asymptotic properties of sample-based estimators for two regression approaches, one based on utilizing the sliced Wasserstein distance directly in the multivariate distribution space, and a second approach based on a new slice-wise distance, employing a univariate distribution regression for each slice. Both global and local Fr\'echet regression methods are deployed for these approaches and illustrated in simulations and through applications. These include joint distributions of excess winter death rates and winter temperature anomalies in European countries as a function of base winter temperature and also data from finance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月25日
Arxiv
0+阅读 · 2024年4月22日
Arxiv
0+阅读 · 2024年4月21日
Arxiv
0+阅读 · 2024年4月20日
Arxiv
0+阅读 · 2024年4月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年4月25日
Arxiv
0+阅读 · 2024年4月22日
Arxiv
0+阅读 · 2024年4月21日
Arxiv
0+阅读 · 2024年4月20日
Arxiv
0+阅读 · 2024年4月18日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员