Millimeter-waves' propagation characteristics create prospects for spatial and temporal spectrum sharing in a variety of contexts, including cognitive spectrum sharing (CSS). However, CSS along with omnidirectional sensing, is not efficient at mmWave frequencies due to their directional nature of transmission, as this limits secondary networks' ability to access the spectrum. This inspired us to create an analytical approach using stochastic geometry to examine the implications of directional cognitive sensing in mmWave networks. We explore a scenario where multiple secondary transmitter-receiver pairs coexist with a primary transmitter-receiver pair, forming a cognitive network. The positions of the secondary transmitters are modelled using a homogeneous Poisson point process (PPP) with corresponding secondary receivers located around them. A threshold on directional transmission is imposed on each secondary transmitter in order to limit its interference at the primary receiver. We derive the medium-access-probability of a secondary user along with the fraction of the secondary transmitters active at a time-instant. To understand cognition's feasibility, we derive the coverage probabilities of primary and secondary links. We provide various design insights via numerical results. For example, we investigate the interference-threshold's optimal value while ensuring coverage for both links and its dependence on various parameters. We find that directionality improves both links' performance as a key factor. Further, allowing location-aware secondary directionality can help achieve similar coverage for all secondary links.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年7月21日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员