Recent advances in virtual reality (VR) system provide fully immersive interactions that connect users with online resources, applications, and each other. Yet these immersive interfaces can make it easier for users to fall prey to a new type of security attacks. We introduce the inception attack, where an attacker controls and manipulates a user's interaction with their VR environment and applications, by trapping them inside a malicious VR application that masquerades as the full VR system. Once trapped in an "inception VR layer", all of the user's interactions with remote servers, network applications, and other VR users can be recorded or modified without their knowledge. This enables traditional attacks (recording passwords and modifying user actions in flight), as well as VR interaction attacks, where (with generative AI tools) two VR users interacting can experience two dramatically different conversations. In this paper, we introduce inception attacks and their design, and describe our implementation that works on all Meta Quest VR headsets. Our implementation of inception attacks includes a cloned version of the Meta Quest browser that can modify data as it's displayed to the user, and alter user input en route to the server (e.g. modify amount of $ transferred in a banking session). Our implementation also includes a cloned VRChat app, where an attacker can eavesdrop and modify live audio between two VR users. We then conduct a study on users with a range of VR experiences, execute the inception attack during their session, and debrief them about their experiences. Only 37% of users noticed the momentary visual "glitch" when the inception attack began, and all but 1 user attributed it to imperfections in the VR platform. Finally, we consider and discuss efficacy and tradeoffs for a wide range of potential inception defenses.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员