Artificial currencies have grown in popularity in many real-world resource allocation settings, gaining traction in government benefits programs like food assistance and transit benefits programs. However, such programs are susceptible to misreporting fraud, wherein users can misreport their private attributes to gain access to more artificial currency (credits) than they are entitled to. To address the problem of misreporting fraud in artificial currency based benefits programs, we introduce an audit mechanism that induces a two-stage game between an administrator and users. In our proposed mechanism, the administrator running the benefits program can audit users at some cost and levy fines against them for misreporting their information. For this audit game, we study the natural solution concept of a signaling game equilibrium and investigate conditions on the administrator budget to establish the existence of equilibria. The computation of equilibria can be done via linear programming in our problem setting through an appropriate design of the audit rules. Our analysis also provides upper bounds that hold in any signaling game equilibrium on the expected excess payments made by the administrator and the probability that users misreport their information. We further show that the decrease in misreporting fraud corresponding to our audit mechanism far outweighs the administrator spending to run it by establishing that its total costs are lower than that of the status quo with no audits. Finally, to highlight the practical viability of our audit mechanism in mitigating misreporting fraud, we present a case study based on the Washington D.C. federal transit benefits program. In this case study, the proposed audit mechanism achieves several orders of magnitude improvement in total cost compared to a no-audit strategy for some parameter ranges.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员