Analyzing the spectral behavior of random matrices with dependency among entries is a challenging problem. The adjacency matrix of the random $d$-regular graph is a prominent example that has attracted immense interest. A crucial spectral observable is the extremal eigenvalue, which reveals useful geometric properties of the graph. According to the Alon's conjecture, which was verified by Friedman, the (nontrivial) extremal eigenvalue of the random $d$-regular graph is approximately $2\sqrt{d-1}$. In the present paper, we analyze the extremal spectrum of the random $d$-regular graph (with $d\ge 3$ fixed) equipped with random edge-weights, and precisely describe its phase transition behavior with respect to the tail of edge-weights. In addition, we establish that the extremal eigenvector is always localized, showing a sharp contrast to the unweighted case where all eigenvectors are delocalized. Our method is robust and inspired by a sparsification technique developed in the context of Erd\H{o}s-R\'{e}nyi graphs (Ganguly and Nam, '22), which can also be applied to analyze the spectrum of general random matrices whose entries are dependent.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2023年7月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
Top
微信扫码咨询专知VIP会员