This paper introduces a broad class of Mirror Descent (MD) and Generalized Exponentiated Gradient (GEG) algorithms derived from trace-form entropies defined via deformed logarithms. Leveraging these generalized entropies yields MD \& GEG algorithms with improved convergence behavior, robustness to vanishing and exploding gradients, and inherent adaptability to non-Euclidean geometries through mirror maps. We establish deep connections between these methods and Amari's natural gradient, revealing a unified geometric foundation for additive, multiplicative, and natural gradient updates. Focusing on the Tsallis, Kaniadakis, Sharma--Taneja--Mittal, and Kaniadakis--Lissia--Scarfone entropy families, we show that each entropy induces a distinct Riemannian metric on the parameter space, leading to GEG algorithms that preserve the natural statistical geometry. The tunable parameters of deformed logarithms enable adaptive geometric selection, providing enhanced robustness and convergence over classical Euclidean optimization. Overall, our framework unifies key first-order MD optimization methods under a single information-geometric perspective based on generalized Bregman divergences, where the choice of entropy determines the underlying metric and dual geometric structure.
翻译:暂无翻译