Social media platforms have become important sources for identifying suicide risk, but automated detection systems face multiple challenges including severe class imbalance, temporal complexity in posting patterns, and the dual nature of risk levels as both ordinal and categorical. This paper proposes a hierarchical dual-head neural network based on MentalRoBERTa for suicide risk classification into four levels: indicator, ideation, behavior, and attempt. The model employs two complementary prediction heads operating on a shared sequence representation: a CORAL (Consistent Rank Logits) head that preserves ordinal relationships between risk levels, and a standard classification head that enables flexible categorical distinctions. A 3-layer Transformer encoder with 8-head multi-head attention models temporal dependencies across post sequences, while explicit time interval embeddings capture posting behavior dynamics. The model is trained with a combined loss function (0.5 CORAL + 0.3 Cross-Entropy + 0.2 Focal Loss) that simultaneously addresses ordinal structure preservation, overconfidence reduction, and class imbalance. To improve computational efficiency, we freeze the first 6 layers (50%) of MentalRoBERTa and employ mixed-precision training. The model is evaluated using 5-fold stratified cross-validation with macro F1 score as the primary metric.
翻译:暂无翻译