The problem of support recovery in one-bit compressed sensing (1bCS) aim to recover the support of a signal $x\in \mathbb{R}^n$, denoted as supp$(x)$, from the observation $y=\text{sign}(Ax)$, where $A\in \mathbb{R}^{m\times n}$ is a sensing matrix and $|\text{supp}(x)|\leq k, k \ll n$. Under this setting, most preexisting works have a recovery runtime $Ω(n)$. In this paper, we propose two schemes that have sublinear $o(n)$ runtime. (1.i): For the universal exact support recovery, a scheme of $m=O(k^2\log(n/k)\log n)$ measurements and runtime $D=O(km)$. (1.ii): For the universal $ε$-approximate support recovery, the same scheme with $m=O(kε^{-1}\log(n/k)\log n)$ and runtime $D=O(ε^{-1}m)$, improving the runtime significantly with an extra $O(\log n)$ factor in the number of measurements compared to the current optimal (Matsumoto et al., 2023). (2): For the probabilistic exact support recovery in the sublinear regime, a scheme of $m:=O(k\frac{\log k}{\log\log k}\log n)$ measurements and runtime $O(m)$, with vanishing error probability, improving the recent result of Yang et al., 2025.
翻译:单比特压缩感知(1bCS)中的支撑集恢复问题旨在从观测值 $y=\\text{sign}(Ax)$ 中恢复信号 $x\\in \\mathbb{R}^n$ 的支撑集,记为 $\\text{supp}(x)$,其中 $A\\in \\mathbb{R}^{m\\times n}$ 为感知矩阵,且 $|\\text{supp}(x)|\\leq k, k \\ll n$。在此设定下,现有大多数工作的恢复运行时间为 $\\Omega(n)$。本文提出了两种具有亚线性 $o(n)$ 运行时间的方案。(1.i):对于通用的精确支撑集恢复,提出一种测量次数 $m=O(k^2\\log(n/k)\\log n)$、运行时间 $D=O(km)$ 的方案。(1.ii):对于通用的 $\\epsilon$-近似支撑集恢复,采用相同方案,测量次数 $m=O(k\\epsilon^{-1}\\log(n/k)\\log n)$,运行时间 $D=O(\\epsilon^{-1}m)$,与当前最优结果(Matsumoto 等人,2023)相比,在测量次数上增加 $O(\\log n)$ 因子,但显著改善了运行时间。(2):针对亚线性区域内的概率性精确支撑集恢复,提出一种测量次数 $m:=O(k\\frac{\\log k}{\\log\\log k}\\log n)$、运行时间 $O(m)$ 的方案,其错误概率趋于零,改进了 Yang 等人(2025)的最新结果。