We propose several new lower bounds on the bandwidth costs of MDS convertible codes using a linear-algebraic framework. The derived bounds improve previous results in certain parameter regimes and match the bandwidth cost of the construction proposed by Maturana and Rashmi (2022 IEEE International Symposium on Information Theory) for $r^F\le r^I\le k^F$, implying that our bounds are tight in this case.
翻译:我们利用线性代数框架提出了MDS可转换码带宽成本的若干新下界。在特定参数范围内,所推导的下界改进了先前的结果,并与Maturana和Rashmi(2022年IEEE国际信息论研讨会)提出的构造的带宽成本相匹配,这意味着在这种情况下我们的下界是紧致的。