In this paper, we give list coloring variants of simple iterative defective coloring algorithms. Formally, in a list defective coloring instance, each node $v$ of a graph is given a list $L_v$ of colors and a list of allowed defects $d_v(x)$ for the colors. Each node $v$ needs to be colored with a color $x\in L_v$ such that at most $d_v(x)$ neighbors of $v$ also pick the same color $x$. For a defect parameter $d$, it is known that by making two sweeps in opposite order over the nodes of an edge-oriented graph with maximum outdegree $\beta$, one can compute a coloring with $O(\beta^2/d^2)$ colors such that every node has at most $d$ outneighbors of the same color. We generalize this and show that if all nodes have lists of size $p^2$ and $\forall v:\sum_{x\in L_v}(d_v(x)+1)>p\cdot\beta$, we can make two sweeps of the nodes such that at the end, each node $v$ has chosen a color $x\in L_v$ for which at most $d_v(x)$ outneighbors of $v$ are colored with color $x$. Our algorithm is simpler and computationally significantly more efficient than existing algorithms for similar list defective coloring problems. We show that the above result can in particular be used to obtain an alternative $\tilde{O}(\sqrt{\Delta})+O(\log^* n)$-round algorithm for the $(\Delta+1)$-coloring problem in the CONGEST model. The neighborhood independence $\theta$ of a graph is the maximum number of pairwise non-adjacent neighbors of some node of the graph. It is known that by doing a single sweep over the nodes of a graph of neighborhood independence $\theta$, one can compute a $d$-defective coloring with $O(\theta\cdot \Delta/d)$ colors. We extend this approach to the list defective coloring setting and use it to obtain an efficient recursive coloring algorithm for graphs of neighborhood independence $\theta$. In particular, if $\theta=O(1)$, we get an $(\log\Delta)^{O(\log\log\Delta)}+O(\log^* n)$-round algorithm.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员