Clustering bipartite graphs is a fundamental task in network analysis. In the high-dimensional regime where the number of rows $n_1$ and the number of columns $n_2$ of the associated adjacency matrix are of different order, existing methods derived from the ones used for symmetric graphs can come with sub-optimal guarantees. Due to increasing number of applications for bipartite graphs in the high dimensional regime, it is of fundamental importance to design optimal algorithms for this setting. The recent work of Ndaoud et al (2022) improves the existing upper-bound for the misclustering rate in the special case where the columns (resp. rows) can be partitioned into $L = 2$ (resp. $K = 2$) communities. Unfortunately, their algorithm cannot be extended to the more general setting where $K \neq L \geq 2$. We overcome this limitation by introducing a new algorithm based on the power method. We derive conditions for exact recovery in the general setting where $K \neq L \geq 2$, and show that it recovers the result in Ndaoud et al (2022). We also derive a minimax lower bound on the misclustering error when $ K = L = 2$, which matches the corresponding upper bound up to a constant factor.


翻译:在高维系统中,当相关相邻矩阵的行数为n_1美元和列数为$_2美元时,从对称图所使用的对称图中得出的现有方法可以带来亚最佳保证。由于在高维系统中对双面图应用量的增加,因此为这一设置设计最佳算法至关重要。Ndaoud等人(2022年)最近的工作改善了特殊情况下现有错误组合率的上限,在特殊情况下,列(重复行)可分为2美元=2美元(重复美元=2美元)。不幸的是,它们的算法不能扩展至高维系统对双面图应用量的增加,因此我们根据权力方法采用新的算法克服了这一限制。我们从总体假设中得出了准确的恢复条件,即:在特殊情况下,列(重复行)可分为2美元=2美元(重复美元=2美元)。不幸的是,它们的算法不能扩展至更一般的设置,即根据权力方法采用新的算法,将N\neq Leq 2美元改为正值,在最低基组(20美元=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员