Real-time and precise traffic flow prediction is vital for the efficiency of intelligent transportation systems. Traditional methods often employ graph neural networks (GNNs) with predefined graphs to describe spatial correlations among traffic nodes in urban road networks. However, these pre-defined graphs are limited by existing knowledge and graph generation methodologies, offering an incomplete picture of spatial correlations. While time-varying graphs based on data-driven learning have attempted to address these limitations, they still struggle with adequately capturing the inherent spatial correlations in traffic data. Moreover, most current methods for capturing dynamic temporal correlations rely on a unified calculation scheme using a temporal multi-head self-attention mechanism, which at some level might leads to inaccuracies. In order to overcome these challenges, we have proposed a novel hybrid time-varying graph neural network (HTVGNN) for traffic flow prediction. Firstly, a novel enhanced temporal perception multi-head self-attention mechanism based on time-varying mask enhancement was reported to more accurately model the dynamic temporal dependencies among distinct traffic nodes in the traffic network. Secondly, we have proposed a novel graph learning strategy to concurrently learn both static and dynamic spatial associations between different traffic nodes in road networks. Meanwhile, in order to enhance the learning ability of time-varying graphs, a coupled graph learning mechanism was designed to couple the graphs learned at each time step. Finally, the effectiveness of the proposed method HTVGNN was demonstrated with four real data sets. Simulation results revealed that HTVGNN achieves superior prediction accuracy compared to the state of the art spatio-temporal graph neural network models. Additionally, the ablation experiment verifies that the coupled graph learning mechanism can effectively improve the long-term prediction performance of HTVGNN.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员