The US federal government spends more than a trillion dollars per year on health care, largely provided by private third parties and reimbursed by the government. A major concern in this system is overbilling, waste and fraud by providers, who face incentives to misreport on their claims in order to receive higher payments. In this paper, we develop novel machine learning tools to identify providers that overbill Medicare, the US federal health insurance program for elderly adults and the disabled. Using large-scale Medicare claims data, we identify patterns consistent with fraud or overbilling among inpatient hospitalizations. Our proposed approach for Medicare fraud detection is fully unsupervised, not relying on any labeled training data, and is explainable to end users, providing reasoning and interpretable insights into the potentially suspicious behavior of the flagged providers. Data from the Department of Justice on providers facing anti-fraud lawsuits and several case studies validate our approach and findings both quantitatively and qualitatively.


翻译:美国政府每年花费超过一万亿美元用于医疗保健,大部分由私人第三方提供,并由政府偿还。这个系统的一个主要关切是,供应商过度收费、浪费和欺诈,他们面临误报索赔的诱因,以获得更高的付款。在本文中,我们开发了新型机器学习工具,以识别超标医疗保险、美国联邦老年和残疾人医疗保险计划等服务提供者。我们使用大型医疗保险索偿数据,确定与住院病人欺诈或超额收费相一致的模式。我们提出的美第奇塔欺诈检测方法完全不受监督,不依赖任何有标签的培训数据,并向终端用户解释,提供理由和可解释的关于被点名的提供者潜在可疑行为的解释。司法部关于面临反欺诈诉讼的提供者的数据以及若干案例研究证实了我们在定量和定性方面的做法和调查结果。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
26+阅读 · 2019年11月24日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员