Data-driven planar pushing methods have recently gained attention as they reduce manual engineering effort and improve generalization compared to analytical approaches. However, most prior work targets narrow capabilities (e.g., side switching, precision, or single-task training), limiting broader applicability. We present a model-based framework for non-prehensile tabletop pushing that uses a single learned model to address multiple tasks without retraining. Our approach employs a recurrent GRU-based architecture with additional non-linear layers to capture object-environment dynamics while ensuring stability. A tailored state-action representation enables the model to generalize across uncertain dynamics, variable push lengths, and diverse tasks. For control, we integrate the learned dynamics with a sampling-based Model Predictive Path Integral (MPPI) controller, which generates adaptive, task-oriented actions. This framework supports side switching, variable-length pushes, and objectives such as precise positioning, trajectory following, and obstacle avoidance. Training is performed in simulation with domain randomization to support sim-to-real transfer. We first evaluate the architecture through ablation studies, showing improved prediction accuracy and stable rollouts. We then validate the full system in simulation and real-world experiments using a Franka Panda robot with markerless tracking. Results demonstrate high success rates in precise positioning under strict thresholds and strong performance in trajectory tracking and obstacle avoidance. Moreover, multiple tasks are solved simply by changing the controller's objective function, without retraining. While our current focus is on a single object type, we extend the framework by training on wider push lengths and designing a balanced controller that reduces the number of steps for longer-horizon goals.
翻译:暂无翻译