Adversary emulation is an essential procedure for cybersecurity assessments such as evaluating an organization's security posture or facilitating structured training and research in dedicated environments. To allow for systematic and time-efficient assessments, several approaches from academia and industry have worked towards the automation of adversarial actions. However, they exhibit significant limitations regarding autonomy, tactics coverage, and real-world applicability. Consequently, adversary emulation remains a predominantly manual task requiring substantial human effort and security expertise - even amidst the rise of Large Language Models. In this paper, we present Bounty Hunter, an automated adversary emulation method, designed and implemented as an open-source plugin for the popular adversary emulation platform Caldera, that enables autonomous emulation of adversaries with multi-faceted behavior while providing a wide coverage of tactics. To this end, it realizes diverse adversarial behavior, such as different levels of detectability and varying attack paths across repeated emulations. By autonomously compromising a simulated enterprise network, Bounty Hunter showcases its ability to achieve given objectives without prior knowledge of its target, including pre-compromise, initial compromise, and post-compromise attack tactics. Overall, Bounty Hunter facilitates autonomous, comprehensive, and multi-faceted adversary emulation to help researchers and practitioners in performing realistic and time-efficient security assessments, training exercises, and intrusion detection research.


翻译:对手仿真是网络安全评估中的关键流程,例如评估组织的安全态势或在专用环境中促进结构化培训与研究。为实现系统化且高效的评估,学术界和工业界的多种方法致力于对手行为的自动化。然而,这些方法在自主性、战术覆盖范围和实际应用性方面存在显著局限。因此,即使在大语言模型兴起的背景下,对手仿真仍主要依赖人工操作,需要大量人力投入和安全专业知识。本文提出Bounty Hunter,一种自动化对手仿真方法,设计并实现为流行对手仿真平台Caldera的开源插件,能够自主仿真具有多面行为的对手,同时提供广泛的战术覆盖。为此,它实现了多样化的对手行为,例如不同级别的可检测性以及在重复仿真中变化的攻击路径。通过自主攻陷模拟企业网络,Bounty Hunter展示了其在无目标先验知识的情况下实现给定目标的能力,包括预攻陷、初始攻陷和攻陷后攻击战术。总体而言,Bounty Hunter促进了自主、全面且多面性的对手仿真,有助于研究人员和从业者进行现实且高效的安全评估、培训演练和入侵检测研究。

0
下载
关闭预览

相关内容

安全评估分狭义和广义二种。狭义指对一个具有特定功能的工作系统中固有的或潜在的危险及其严重程度所进行的分析与评估,并以既定指数、等级或概率值作出定量的表示,最后根据定量值的大小决定采取预防或防护对策。广义指利用系统工程原理和方法对拟建或已有工程、系统可能存在的危险性及其可能产生的后果进行综合评价和预测,并根据可能导致的事故风险的大小,提出相应的安全对策措施,以达到工程、系统安全的过程。安全评估又称风险评估、危险评估,或称安全评价、风险评价和危险评价。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员