The all-pairs shortest distances (APSD) with differential privacy (DP) problem takes as input an undirected, weighted graph $G = (V,E, \mathbf{w})$ and outputs a private estimate of the shortest distances in $G$ between all pairs of vertices. In this paper, we present a simple $\widetilde{O}(n^{1/3}/\varepsilon)$-accurate algorithm to solve APSD with $\varepsilon$-DP, which reduces to $\widetilde{O}(n^{1/4}/\varepsilon)$ in the $(\varepsilon, \delta)$-DP setting, where $n = |V|$. Our algorithm greatly improves upon the error of prior algorithms, namely $\widetilde{O}(n^{2/3}/\varepsilon)$ and $\widetilde{O}(\sqrt{n}/\varepsilon)$ in the two respective settings, and is the first to be optimal up to a polylogarithmic factor, based on a lower bound of $\widetilde{\Omega}(n^{1/4})$. In the case where a multiplicative approximation is allowed, we give two different constructions of algorithms with reduced additive error. Our first construction allows a multiplicative approximation of $O(k\log{\log{n}})$ and has additive error $\widetilde{O}(k\cdot n^{1/k}/\varepsilon)$ in the $\varepsilon$-DP case and $\widetilde{O}(\sqrt{k}\cdot n^{1/(2k)}/\varepsilon)$ in the $(\varepsilon, \delta)$-DP case. Our second construction allows multiplicative approximation $2k-1$ and has the same asymptotic additive error as the first construction. Both constructions significantly improve upon the currently best-known additive error of, $\widetilde{O}(k\cdot n^{1/2 + 1/(4k+2)}/\varepsilon)$ and $\widetilde{O}(k\cdot n^{1/3 + 2/(9k+3)}/\varepsilon)$, respectively. Our algorithms are straightforward and work by decomposing a graph into a set of spanning trees, and applying a key observation that we can privately release APSD in trees with $O(\text{polylog}(n))$ error.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员