For end-to-end performance testing, workload simulation is an important method to enhance the real workload while protecting user privacy. To ensure the effectiveness of the workload simulation, it is necessary to dynamically evaluate the similarity of system inner status using key performance indicators(KPIs), which provide a comprehensive record of the system status, between the simulated workload and real workload by injecting workload into the system. However, due to the characteristics of KPIs, including large data size, amplitude differences, phase shifts, non-smoothness, high dimension, and Large numerical span, it is unpractical to evaluation on the full volume of KPIs and is challenging to measure the similarity between KPIs. In this paper, we propose a similarity metric algorithm for KPIs, ESBD, which describes both shape and intensity similarity. Around ESBD, a KPIs-based quality evaluation of workload simulation(KEWS) was proposed, which consists of four steps: KPIs preprocessing, KPIs screening, KPIs clustering, and KPIs evaluation. These techniques help mitigate the negative impact of the KPIs characteristics and give a comprehensive evaluation result. The experiments conducted on Hipstershop, an open-source microservices application, show the effectiveness of the ESBD and KEWS.


翻译:对于端到端的绩效测试,工作量模拟是提高实际工作量,同时保护用户隐私的一个重要方法。为确保工作量模拟的有效性,有必要使用关键业绩指标(KPI)动态地评估系统内部状况的相似性,这些指标通过向系统注入工作量,全面记录系统模拟工作量和实际工作量,全面记录系统状况,但是,由于KPI的特征,包括数据大小大、振幅差异、阶段转移、非抽取性、高尺寸和大数字范围,因此,对KPI的全部数量进行评价是不切实际的,而且难以衡量KPI之间的相似性。在本文件中,我们提议为KPI、ESBD提出一个类似性指标算法,描述形状和强度相似性。在ESBD周围,提出了基于KPI对工作量模拟的质量评价,其中包括四个步骤:KPI的预处理、KPI的筛选、KPI的集群和KPIs的评价。这些技术有助于减轻KPI特性的消极影响,并对KPI的相似性进行衡量。在本文件中,我们提议为KPB、ESA的开放应用软件和EBA的效益。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员