In this work, we introduce our solution to the EPIC-KITCHENS-100 2022 Action Detection challenge. One-stage Action Detection Transformer (OADT) is proposed to model the temporal connection of video segments. With the help of OADT, both the category and time boundary can be recognized simultaneously. After ensembling multiple OADT models trained from different features, our model can reach 21.28\% action mAP and ranks the 1st on the test-set of the Action detection challenge.


翻译:在这项工作中,我们提出了解决EPIC-KITCHENS-100 2022行动探测挑战的办法。建议采用一个阶段的行动探测变异器(OADT)来模拟视频段的时间连接。在OADT的帮助下,可以同时识别该类别和时间边界。在组合了多个从不同特点受训的OADT模型之后,我们的模型可以达到21.28 ⁇ 行动 mAP,并在“行动探测”挑战的测试集中排第1位。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Arxiv
11+阅读 · 2022年3月16日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
13+阅读 · 2019年4月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员