Embedded systems continue to rapidly proliferate in diverse fields, including medical devices, autonomous vehicles, and more generally, the Internet of Things (IoT). Many embedded systems require application-specific hardware components to meet precise timing requirements within limited resource (area and energy) constraints. High-level synthesis (HLS) is an increasingly popular approach for improving the productivity of designing hardware and reducing the time/cost by using high-level languages to specify computational functionality and automatically generate hardware implementations. However, current HLS methods provide limited or no support to incorporate or utilize precise timing specifications within the synthesis and optimization process. In this paper, we present a hybrid high-level synthesis (H-HLS) framework that integrates state-based high-level synthesis (SB-HLS) with performance-driven high-level synthesis (PD-HLS) methods to enable the design and optimization of application-specific embedded systems in which timing information is explicitly and precisely defined in state-based system models. We demonstrate the results achieved by this H-HLS approach using case studies including a wearable pregnancy monitoring device, an ECG-based biometric authentication system, and a synthetic system, and compare the design space exploration results using two PD-HLS tools to show how H-HLS can provide low energy and area under timing constraints.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员