While transformer-based architectures have taken computer vision and NLP by storm, they often require a vast amount of parameters and training data to attain strong performance. In this work, we experiment with three distinct pre-training, intermediate fine-tuning, and downstream datasets and training objectives to explore their marginal benefits on a small 5M-parameter vision transformer. We find that while pre-training and fine-tuning always help our model but have diminishing returns, intermediate fine-tuning can actually show harmful impact on downstream performance, potentially due to dissimilarity in task mechanics. Taken together, our results suggest that small-scale ViTs benefit most from targeted pre-training and careful data selection, while indiscriminate stacking of intermediate tasks can waste compute and even degrade performance.


翻译:尽管基于Transformer的架构已在计算机视觉和自然语言处理领域掀起革命,但它们通常需要大量参数和训练数据才能实现强劲性能。本研究通过三个不同的预训练、中间微调和下游数据集及训练目标进行实验,探究它们对一个小型500万参数视觉Transformer的边际效益。我们发现,虽然预训练和微调始终有助于模型性能,但存在收益递减现象;而中间微调可能因任务机制差异对下游性能产生负面影响。综合而言,我们的结果表明:小规模视觉Transformer最能从针对性预训练和谨慎的数据选择中获益,而无差别堆叠中间任务可能浪费计算资源甚至导致性能下降。

0
下载
关闭预览

相关内容

在搭建网络模型时,需要随机初始化参数,然后开始训练网络,不断调整直到网络的损失越来越小。在训练的过程中,一开始初始化的参数会不断变化。当参数训练到比较好的时候就可以将训练模型的参数保存下来,以便训练好的模型可以在下次执行类似任务时获得较好的结果。
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员