This paper proposes a method for classifying movie genres by only looking at text reviews. The data used are from Large Movie Review Dataset v1.0 and IMDb. This paper compared a K-nearest neighbors (KNN) model and a multilayer perceptron (MLP) that uses tf-idf as input features. The paper also discusses different evaluation metrics used when doing multi-label classification. For the data used in this research, the KNN model performed the best with an accuracy of 55.4\% and a Hamming loss of 0.047.


翻译:本文建议一种仅通过查看文本审查对电影类型进行分类的方法。 所使用的数据来自大型电影审查数据集 v1.0 和 IMDb。 本文比较了K- 近邻模型和多层光谱模型,后者使用 tf- idf 作为输入特征。 本文还讨论了在进行多标签分类时使用的不同评价指标。 对于本研究中使用的数据, KNN 模型的精确度为55.4 ⁇ 和 0.047 的仓载损失, 最佳效果为 55.4 ⁇ 和 0.047 。

0
下载
关闭预览

相关内容

“知识神经元网络”KNN(Knowledge neural network)是一种以“神经元网络”模型 为基础的知识组织方法。 在“知识神经元网络”KNN 中,所谓的“知识”,是描述一个“知识”的文本,如一个网页、Word、PDF 文档等。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年4月25日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员