Image segmentation is a central topic in image processing and computer vision and a key issue in many applications, e.g., in medical imaging, microscopy, document analysis and remote sensing. According to the human perception, image segmentation is the process of dividing an image into non-overlapping regions. These regions, which may correspond, e.g., to different objects, are fundamental for the correct interpretation and classification of the scene represented by the image. The division into regions is not unique, but it depends on the application, i.e., it must be driven by the final goal of the segmentation and hence by the most significant features with respect to that goal. Thus, image segmentation can be regarded as a strongly ill-posed problem. A classical approach to deal with ill posedness consists in incorporating in the model a-priori information about the solution, e.g., in the form of penalty terms. In this work we provide a brief overview of basic computational models for image segmentation, focusing on edge-based and region-based variational models, as well as on statistical and machine-learning approaches. We also sketch numerical methods that are applied in computing solutions to these models. In our opinion, our view can help the readers identify suitable classes of methods for solving their specific problems.


翻译:图像分割是图像处理和计算机视觉的一个中心议题,也是许多应用,例如医学成像、显微镜、文件分析和遥感中的一个关键问题。根据人类的认知,图像分割是将图像分割成非重叠区域的过程。这些区域,例如,与不同对象相对应,对于图像所代表的场景的正确解释和分类至关重要。在这项工作中,我们简要概述了图像分割的基本计算模型,侧重于边缘和基于区域的变异模型,以及统计和机器学习方法。我们还绘制了在计算这些模型时采用的具体方法。我们还绘制了在计算这些模型时采用的具体方法。

0
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员