[...] This paper presents AutoRAN, an automated, intent-driven framework for zero-touch provisioning of open, programmable cellular networks. Leveraging cloud-native principles, AutoRAN employs virtualization, declarative infrastructure-as-code templates, and disaggregated micro-services to abstract physical resources and protocol stacks. Its orchestration engine integrates Language Models (LLMs) to translate high-level intents into machine-readable configurations, enabling closed-loop control via telemetry-driven observability. Implemented on a multi-architecture OpenShift cluster with heterogeneous compute (x86/ARM CPUs, NVIDIA GPUs) and multi-vendor Radio Access Network (RAN) hardware (Foxconn, NI), AutoRAN automates deployment of O-RAN-compliant stacks-including OpenAirInterface, NVIDIA ARC RAN, Open5GS core, and O-RAN Software Community (OSC) RIC components-using CI/CD pipelines. Experimental results demonstrate that AutoRAN is capable of deploying an end-to-end Private 5G network in less than 60 seconds with 1.6 Gbps throughput, validating its ability to streamline configuration, accelerate testing, and reduce manual intervention with similar performance than non cloud-based implementations. With its novel LLM-assisted intent translation mechanism, and performance-optimized automation workflow for multi-vendor environments, AutoRAN has the potential of advancing the robustness of next-generation cellular supply chains through reproducible, intent-based provisioning across public and private deployments.


翻译:本文提出AutoRAN,一种自动化、意图驱动的框架,用于实现开放可编程蜂窝网络的零接触式部署。AutoRAN利用云原生原则,通过虚拟化、声明式基础设施即代码模板以及解耦的微服务,对物理资源和协议栈进行抽象。其编排引擎集成语言模型(LLMs),将高层意图转化为机器可读的配置,并通过遥测驱动的可观测性实现闭环控制。AutoRAN在多架构OpenShift集群上实现,该集群包含异构计算资源(x86/ARM CPU、NVIDIA GPU)和多厂商无线接入网络(RAN)硬件(富士康、NI)。通过CI/CD流水线,AutoRAN自动化部署符合O-RAN标准的协议栈,包括OpenAirInterface、NVIDIA ARC RAN、Open5GS核心网以及O-RAN软件社区(OSC)RIC组件。实验结果表明,AutoRAN能够在60秒内部署端到端私有5G网络,吞吐量达1.6 Gbps,验证了其在保持与非云化实现相近性能的同时,能够简化配置、加速测试并减少人工干预。凭借其新颖的LLM辅助意图转换机制以及针对多厂商环境的性能优化自动化工作流,AutoRAN有望通过跨公有和私有部署的可重复、基于意图的供应,提升下一代蜂窝供应链的稳健性。

0
下载
关闭预览

相关内容

机器或装置在无人干预的情况下按规定的程序或指令自动进行操作或控制的过程, 是一门涉及学科较多、应用广泛的综合性科学技术。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2019年3月13日
Arxiv
10+阅读 · 2018年2月17日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
30+阅读 · 2019年3月13日
Arxiv
10+阅读 · 2018年2月17日
Arxiv
12+阅读 · 2018年1月28日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员