Decision trees are one of the most fundamental computational models for computing Boolean functions $f : \{0, 1\}^n \mapsto \{0, 1\}$. It is well-known that the depth and size of decision trees are closely related to time and number of processors respectively for computing functions in the CREW-PRAM model. For a given $f$, a fundamental goal is to minimize the depth and/or the size of the decision tree computing it. In this paper, we extend the decision tree model to the world of hazard-free computation. We allow each query to produce three results: zero, one, or unknown. The output could also be: zero, one, or unknown, with the constraint that we should output "unknown" only when we cannot determine the answer from the input bits. This setting naturally gives rise to ternary decision trees computing functions, which we call hazard-free decision trees. We prove various lower and upper bounds on the depth and size of hazard-free decision trees and compare them to their Boolean counterparts. We prove optimal separations and relate hazard-free decision tree parameters to well-known Boolean function parameters. We show that the analogues of sensitivity, block sensitivity, and certificate complexity for hazard-free functions are all polynomially equivalent to each other and to hazard-free decision tree depth. i.e., we prove the sensitivity theorem in the hazard-free model. We then prove that hazard-free sensitivity satisfies an interesting structural property that is known to hold in the Boolean world. Hazard-free functions with small hazard-free sensitivity are completely determined by their values in any Hamming ball of small radius in $\{0, u, 1\}^n$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
31+阅读 · 2021年6月30日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2021年7月26日
Arxiv
31+阅读 · 2021年6月30日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
26+阅读 · 2018年2月27日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员