Deploying machine learning (ML) in dynamic data-driven applications systems (DDDAS) can improve the security of industrial control systems (ICS). However, ML-based DDDAS are vulnerable to adversarial attacks because adversaries can alter the input data slightly so that the ML models predict a different result. In this paper, our goal is to build a resilient edge machine learning (reML) architecture that is designed to withstand adversarial attacks by performing Data Air Gap Transformation (DAGT) to anonymize data feature spaces using deep neural networks and randomize the ML models used for predictions. The reML is based on the Resilient DDDAS paradigm, Moving Target Defense (MTD) theory, and TinyML and is applied to combat adversarial attacks on ICS. Furthermore, the proposed approach is power-efficient and privacy-preserving and, therefore, can be deployed on power-constrained devices to enhance ICS security. This approach enables resilient ML inference at the edge by shifting the computation from the computing-intensive platforms to the resource-constrained edge devices. The incorporation of TinyML with TensorFlow Lite ensures efficient resource utilization and, consequently, makes reML suitable for deployment in various industrial control environments. Furthermore, the dynamic nature of reML, facilitated by the resilient DDDAS development environment, allows for continuous adaptation and improvement in response to emerging threats. Lastly, we evaluate our approach on an ICS dataset and demonstrate that reML provides a viable and effective solution for resilient ML inference at the edge devices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年10月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员