In recent years, Graph Convolutional Networks (GCNs) have been widely used in human motion prediction, but their performance remains unsatisfactory. Recently, MLP-Mixer, initially developed for vision tasks, has been leveraged into human motion prediction as a promising alternative to GCNs, which achieves both better performance and better efficiency than GCNs. Unlike GCNs, which can explicitly capture human skeleton's bone-joint structure by representing it as a graph with edges and nodes, MLP-Mixer relies on fully connected layers and thus cannot explicitly model such graph-like structure of human's. To break this limitation of MLP-Mixer's, we propose \textit{Graph-Guided Mixer}, a novel approach that equips the original MLP-Mixer architecture with the capability to model graph structure. By incorporating graph guidance, our \textit{Graph-Guided Mixer} can effectively capture and utilize the specific connectivity patterns within human skeleton's graph representation. In this paper, first we uncover a theoretical connection between MLP-Mixer and GCN that is unexplored in existing research. Building on this theoretical connection, next we present our proposed \textit{Graph-Guided Mixer}, explaining how the original MLP-Mixer architecture is reinvented to incorporate guidance from graph structure. Then we conduct an extensive evaluation on the Human3.6M, AMASS, and 3DPW datasets, which shows that our method achieves state-of-the-art performance.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员