Capacities on a finite set are sets functions vanishing on the empty set and being monotonic w.r.t. inclusion. Since the set of capacities is an order polytope, the problem of randomly generating capacities amounts to generating all linear extensions of the Boolean lattice. This problem is known to be intractable even as soon as $n>5$, therefore approximate methods have been proposed, most notably one based on Markov chains. Although quite accurate, this method is time consuming. In this paper, we propose the 2-layer approximation method, which generates a subset of linear extensions, eliminating those with very low probability. We show that our method has similar performance compared to the Markov chain but is much less time consuming.


翻译:定额数据集上的能力功能在空集中消失,是单调的( w.r. t. ) 。 由于该能力组是一个有顺序的多管区,随机生成能力的问题等于产生布林拉蒂斯的所有线性扩展。 这个问题已知即使一到5美元就难以解决, 因此提出了近似的方法, 主要是基于Markov 链条的方法。 虽然这个方法相当准确, 但很费时。 在本文中, 我们提议了2级近似方法, 产生一个线性扩展子集, 消除概率非常低的扩展。 我们显示, 我们的方法与Markov 链相近, 但花费的时间要少得多 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员