The deep unfolding approach has attracted significant attention in computer vision tasks, which well connects conventional image processing modeling manners with more recent deep learning techniques. Specifically, by establishing a direct correspondence between algorithm operators at each implementation step and network modules within each layer, one can rationally construct an almost ``white box'' network architecture with high interpretability. In this architecture, only the predefined component of the proximal operator, known as a proximal network, needs manual configuration, enabling the network to automatically extract intrinsic image priors in a data-driven manner. In current deep unfolding methods, such a proximal network is generally designed as a CNN architecture, whose necessity has been proven by a recent theory. That is, CNN structure substantially delivers the translational invariant image prior, which is the most universally possessed structural prior across various types of images. However, standard CNN-based proximal networks have essential limitations in capturing the rotation symmetry prior, another universal structural prior underlying general images. This leaves a large room for further performance improvement in deep unfolding approaches. To address this issue, this study makes efforts to suggest a high-accuracy rotation equivariant proximal network that effectively embeds rotation symmetry priors into the deep unfolding framework. Especially, we deduce, for the first time, the theoretical equivariant error for such a designed proximal network with arbitrary layers under arbitrary rotation degrees. This analysis should be the most refined theoretical conclusion for such error evaluation to date and is also indispensable for supporting the rationale behind such networks with intrinsic interpretability requirements.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员