Large-scale behavior of a wide class of spatial and spatiotemporal processes is characterized in terms of informational measures. Specifically, subordinated random fields defined by non-linear transformations on the family of homogeneous and isotropic Lancaster-Sarmanov random fields are studied under long-range dependence (LRD) assumptions. In the spatial case, it is shown that Shannon mutual information beween marginal distributions for infinitely increasing distance, which can be properly interpreted as a measure of macroscale structural complexity and diversity, has an asymptotic power decay that directly depends on the underlying LRD parameter, scaled by the subordinating function rank. Sensitivity with respect to distortion induced by the deformation parameter under the generalized form given by divergence-based R\'enyi mutual information is also analyzed. In the spatiotemporal framework, a spatial infinite-dimensional random field approach is adopted. The study of the large-scale asymptotic behavior is then extended under the proposal of a functional formulation of the Lancaster-Sarmanov random field class, as well as of divergence-based mutual information. Results are illustrated, in the context of geometrical analysis of sample paths, considering some scenarios based on Gaussian and Chi-Square subordinated spatial and spatio-temporal random fields.


翻译:信息计量是广泛空间和空间时空进程的大规模大规模行为特征。具体地说,在长距离依赖(LRD)假设下,研究由同质和异端Lancaster-Sarmanov家庭非线性变异定义的非线性变异所定义的附属随机字段。在空间假设中,显示香农相互信息为无限扩大的距离进行边际分布,可被适当解释为宏观结构复杂性和多样性的计量,其衰减直接取决于根基LRD参数,以次调函数等级为尺度。还分析了对基于差异的R\'enyi相互信息以普遍形式呈现的变形参数引起的变形的感知性。在空间假设框架中,采用了空间无限的无线随机场方法。然后,根据兰开斯特-Sarmanov随机场级的功能配置建议,扩展了大规模变形行为的研究,以及一些基于差异的相互信息。在基于空间空间图象和空间平流场的草率分析中展示了结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月23日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员