There has been increasing interest in studying the effect of giving births to unintended pregnancies on later life physical and mental health. In this article, we provide the protocol for our planned observational study on the long-term mental and physical health consequences for mothers who bear children resulting from unintended pregnancies. We aim to use the data from the Wisconsin Longitudinal Study (WLS) and examine the effect of births from unintended pregnancies on a broad range of outcomes, including mental depression, psychological well-being, physical health, alcohol usage, and economic well-being. To strengthen our causal findings, we plan to address our research questions on two subgroups, Catholics and non-Catholics, and discover the "replicable" outcomes for which the effect of unintended pregnancy is negative (or, positive) in both subgroups. Following the idea of non-random cross-screening, the data will be split according to whether the woman is Catholic or not, and then one part of the data will be used to select the hypotheses and design the corresponding tests for the second part of the data. In past use of cross-screening (automatic cross-screening) there was only one team of investigators that dealt with both parts of the data so that the investigators would need to decide on an analysis plan before looking at the data. In this protocol, we describe plans to carry out a novel flexible cross-screening in which there will be two teams of investigators with access only to one part of data and each team will use their part of the data to decide how to plan the analysis for the second team's data. In addition to the above replicability analysis, we also discuss the plan to test the global null hypothesis that is intended to identify the outcomes which are affected by unintended pregnancy for at least one of the two subgroups of Catholics and non-Catholics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员