Background: Frailty, a state of increased vulnerability to adverse health outcomes, has garnered significant attention in research and clinical practice. Existing constructs aggregate clinical features or health deficits into a single score. While simple and interpretable, this approach may overlook the complexity of frailty and not capture the full range of variation between individuals. Methods: Exploratory factor analysis was used to infer latent dimensions of a frailty index constructed using survey data from the English Longitudinal Study of Ageing (ELSA), wave 9. The dataset included 58 self-reported health deficits in a representative sample of community-dwelling adults aged 65+ (N = 4971). Deficits encompassed chronic disease, general health status, mobility, independence with activities of daily living, psychological wellbeing, memory and cognition. Multiple linear regression examined associations with CASP-19 quality of life scores. Results: Factor analysis revealed four frailty subdimensions. Based on the component deficits with the highest loading values, these factors were labelled "Mobility Impairment and Physical Morbidity", "Difficulties in Daily Activities", "Mental Health" and "Disorientation in Time". The four subdimensions were a better predictor of quality of life than frailty index scores. Conclusions: Distinct subdimensions of frailty can be identified from standard index scores. A decomposed approach to understanding frailty has potential to provide a more nuanced understanding of an individual's state of health across multiple deficits.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员