Transformer-based, pre-trained large language models (LLMs) have demonstrated outstanding performance across diverse domains, particularly in the emerging {\em pretrain-then-finetune} paradigm. Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is commonly used to adapt a base LLM to multiple downstream tasks. Further, LLM platforms enable developers to fine-tune multiple models and develop various domain-specific applications simultaneously. However, existing model parallelism schemes suffer from high communication overhead and inefficient GPU utilization when training multiple LoRA tasks across GPUs and machines. In this paper, we present mLoRA, a parallelism-efficient fine-tuning system designed for training multiple LoRA across GPUs and machines. mLoRA introduces a novel LoRA-aware pipeline parallelism scheme that efficiently pipelines independent LoRA adapters and their distinct fine-tuning stages across GPUs and machines, along with a new LoRA-efficient operator to enhance GPU utilization during pipelined LoRA training. Our extensive evaluation shows that mLoRA can significantly reduce average fine-tuning task completion time, e.g., by 30\%, compared to state-of-the-art methods like FSDP. More importantly, mLoRA enables simultaneous fine-tuning of larger models, e.g., two Llama-2-13B models on four NVIDIA RTX A6000 48GB GPUs, which is not feasible for FSDP due to high memory requirements. Hence, mLoRA not only increases fine-tuning efficiency but also makes it more accessible on cost-effective GPUs. mLoRA has been deployed in AntGroup's production environment.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员