In this article, we introduce and study a one sided tempered stable autoregressive (TAR) process. Under the assumption of stationarity of the model, the marginal probbaility density function of the error term is found. It is shown that the distribution of error is infinitely divisible. Parameter estimation of the introduced TAR process is done by adopting the conditional least square and moments based approach and the performance of the proposed methods is shown on simulated data. Our model generalize the inverse Gaussian and one-sided stable autoregressive models.


翻译:在本篇文章中,我们引入并研究一个侧面的温和稳定的自动递减进程。在模型的固定性假设下,发现错误术语的边际粗密度函数。显示错误的分布是无限的,引入的TAR过程的参数估计是通过采用有条件的最小平方和瞬间方法进行的,而拟议方法的性能则在模拟数据中显示。我们的模型对反高斯和片面稳定的自动递减模型进行了概括。

0
下载
关闭预览

相关内容

不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
65+阅读 · 2020年12月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Arxiv
0+阅读 · 2021年7月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Top
微信扫码咨询专知VIP会员