The current speech anti-spoofing countermeasures (CMs) show excellent performance on specific datasets. However, removing the silence of test speech through Voice Activity Detection (VAD) can severely degrade performance. In this paper, the impact of silence on speech anti-spoofing is analyzed. First, the reasons for the impact are explored, including the proportion of silence duration and the content of silence. The proportion of silence duration in spoof speech generated by text-to-speech (TTS) algorithms is lower than that in bonafide speech. And the content of silence generated by different waveform generators varies compared to bonafide speech. Then the impact of silence on model prediction is explored. Even after retraining, the spoof speech generated by neural network based end-to-end TTS algorithms suffers a significant rise in error rates when the silence is removed. To demonstrate the reasons for the impact of silence on CMs, the attention distribution of a CM is visualized through class activation mapping (CAM). Furthermore, the implementation and analysis of the experiments masking silence or non-silence demonstrates the significance of the proportion of silence duration for detecting TTS and the importance of silence content for detecting voice conversion (VC). Based on the experimental results, improving the robustness of CMs against unknown spoofing attacks by masking silence is also proposed. Finally, the attacks on anti-spoofing CMs through concatenating silence, and the mitigation of VAD and silence attack through low-pass filtering are introduced.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CMS:内容管理系统
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员