Joint editing of audio and visual content is crucial for precise and controllable content creation. This new task poses challenges due to the limitations of paired audio-visual data before and after targeted edits, and the heterogeneity across modalities. To address the data and modeling challenges in joint audio-visual editing, we introduce SAVEBench, a paired audiovisual dataset with text and mask conditions to enable object-grounded source-to-target learning. With SAVEBench, we train the Schrodinger Audio-Visual Editor (SAVE), an end-to-end flow-matching model that edits audio and video in parallel while keeping them aligned throughout processing. SAVE incorporates a Schrodinger Bridge that learns a direct transport from source to target audiovisual mixtures. Our evaluation demonstrates that the proposed SAVE model is able to remove the target objects in audio and visual content while preserving the remaining content, with stronger temporal synchronization and audiovisual semantic correspondence compared with pairwise combinations of an audio editor and a video editor.


翻译:音频与视觉内容的联合编辑对于实现精确且可控的内容创作至关重要。这一新任务面临挑战,主要源于目标编辑前后成对音视频数据的稀缺性以及跨模态的异质性。为应对联合音视频编辑中的数据与建模难题,我们引入了SAVEBench——一个具备文本和掩码条件的成对音视频数据集,以支持基于对象的源到目标学习。基于SAVEBench,我们训练了薛定谔音视频编辑器(SAVE),这是一个端到端的流匹配模型,能够并行编辑音频和视频,并在整个处理过程中保持二者的对齐。SAVE整合了薛定谔桥,该桥学习从源到目标音视频混合物的直接传输路径。评估结果表明,所提出的SAVE模型能够有效移除音频和视觉内容中的目标对象,同时保留其余内容,相较于音频编辑器与视频编辑器的两两组合,SAVE展现出更强的时间同步性和音视频语义对应关系。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员