Relational Database Management Systems designed for Online Analytical Processing (RDBMS-OLAP) have been foundational to democratizing data and enabling analytical use cases such as business intelligence and reporting for many years. However, RDBMS-OLAP systems present some well-known challenges. They are primarily optimized only for relational workloads, lead to proliferation of data copies which can become unmanageable, and since the data is stored in proprietary formats, it can lead to vendor lock-in, restricting access to engines, tools, and capabilities beyond what the vendor offers. As the demand for data-driven decision making surges, the need for a more robust data architecture to address these challenges becomes ever more critical. Cloud data lakes have addressed some of the shortcomings of RDBMS-OLAP systems, but they present their own set of challenges. More recently, organizations have often followed a two-tier architectural approach to take advantage of both these platforms, leveraging both cloud data lakes and RDBMS-OLAP systems. However, this approach brings additional challenges, complexities, and overhead. This paper discusses how a data lakehouse, a new architectural approach, achieves the same benefits of an RDBMS-OLAP and cloud data lake combined, while also providing additional advantages. We take today's data warehousing and break it down into implementation independent components, capabilities, and practices. We then take these aspects and show how a lakehouse architecture satisfies them. Then, we go a step further and discuss what additional capabilities and benefits a lakehouse architecture provides over an RDBMS-OLAP.


翻译:暂无翻译

0
下载
关闭预览

相关内容

数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。 数据仓库是决策支持系统和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。其特征在于面向主题、集成性、稳定性和时变性。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月29日
Arxiv
14+阅读 · 2023年8月7日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员