The aim of this paper is to address the convergence analysis of a finite-volume scheme for the approximation of a stochastic non-linear parabolic problem set in a bounded domain of $\mathbb{R}^2$ and under homogeneous Neumann boundary conditions. The considered discretization is semi-implicit in time and TPFA in space. By adapting well-known methods for the time-discretization of stochastic PDEs, one shows that the associated finite-volume approximation converges towards the unique variational solution of the continuous problem strongly in $L^2(\Omega; L^2(0,T;L^2(\Lambda)))$.


翻译:

0
下载
关闭预览

相关内容

粗粒化分子构象生成
专知会员服务
10+阅读 · 2022年9月18日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
12+阅读 · 2021年7月27日
专知会员服务
78+阅读 · 2021年3月16日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
粗粒化分子构象生成
专知会员服务
10+阅读 · 2022年9月18日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
12+阅读 · 2021年7月27日
专知会员服务
78+阅读 · 2021年3月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员