In the past few years, cybersecurity is becoming very important due to the rise in internet users. The internet attacks such as Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks severely harm a website or server and make them unavailable to other users. Network Monitoring and control systems have found it challenging to identify the many classes of DoS and DDoS attacks since each operates uniquely. Hence a powerful technique is required for attack detection. Traditional machine learning techniques are inefficient in handling extensive network data and cannot extract high-level features for attack detection. Therefore, an effective deep learning-based intrusion detection system is developed in this paper for DoS and DDoS attack classification. This model includes various phases and starts with the Deep Convolutional Generative Adversarial Networks (DCGAN) based technique to address the class imbalance issue in the dataset. Then a deep learning algorithm based on ResNet-50 extracts the critical features for each class in the dataset. After that, an optimized AlexNet-based classifier is implemented for detecting the attacks separately, and the essential parameters of the classifier are optimized using the Atom search optimization algorithm. The proposed approach was evaluated on benchmark datasets, CCIDS2019 and UNSW-NB15, using key classification metrics and achieved 99.37% accuracy for the UNSW-NB15 dataset and 99.33% for the CICIDS2019 dataset. The investigational results demonstrate that the suggested approach performs superior to other competitive techniques in identifying DoS and DDoS attacks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员